The Power Platform is often considered a dark art because many of us are very focused on Dynamics 365 or Office 365. In this presentation and demonstration I’ll show you how the Power Platform bridges many gaps within the Microsoft stack and brings many of the Microsoft products together.​

Tom Franz, along with Lindy Belley and Nicole Sparrow analyze the IRS release of the 2020 W-4 where personal exemptions have gone away. Payroll professionals and the systems used to process payroll must change to accommodate the new form and withholding calculation. In this session, we will cover those details and share information on 2020 Tax Updates.

The last quarter of the year is pressure time. Asking your teams to offer up a solid budget is challenging to say the least. Getting the data collected, put into place and then refined is not easy! Come and learn what you can do differently for 2022. It’s not too early to get things in line with Forecaster so you can refine the process and reporting can be better during the year. Derek will also share with you what to look for when considering a new budgeting tool – it’s time as you need support to be successful. Walk away with 5 key points to review when planning for your next year’s process and tools.

Hay mucho material en internet sobre ‘las mejores 50 preguntas para entrevistar a un data scientist’ y similares. Le aseguro que cualquier candidato aspirante a data scientist ha leído y aprendido todas esas mismas preguntas y respuestas que probablemente usted le hará y espera, respectivamente.Tras observar y trabajar con muchos de estos profesionales de los datos -tanto entrevistados y contratados, como profesionales internos formados en disciplinas de datos- algunas conclusiones he obtenido. Al fin y al cabo, soy data scientist y aprendo con la observación y contrastación de datos y evidencias -como no podía ser menos-.Despues de haber entrevistado a muchos aspirantes a data scientist, asi así como haber entrenado a mas de 300 personas en ciencia de datos, me gustaría compartir mi experiencia en el proceso de contratacion, y algunas consideraciones adicionales.Cómo entrevistar a un data scientistLa mejor estrategia de entrevista a un candidato a data scientist es enfocarse en su habilidad de resolver problemas; no tanto en sus conocimientos técnicos, ni tampoco en su formación (que por supuesto tambien son necesarios). No digo con esto omitir preguntas técnicas – conceptos estadísticos, algoritmos y modelos, programación, etc.-, sino enfóquese en entender cómo razona el candidato para resolver problemas.Le aseguro que en la vida real el 90% de los problemas que tendrá que resolver como data scientist serán problemas aparentemente irresolubles.“Según estudios psicológicos, la resolución de escenarios absurdos mejora la creatividad y el análisis de patrones”No tenga inconveniente en platear al candidato escenarios absurdos e irreales, y preste atención a como razona el candidato su propuesta de resolver el problema. Quizá aporta una solución también absurda (prepárese para ello), pero si aporta una solución es mucho mas que no aportar nada.Una técnica que ha sido muy eficiente en mi experiencia es preparar una prueba al candidato, ver como la resuelve y pedirle que explique sus conclusiones. Es decir, en vez de realizar una ‘entrevista’ como tal, preparar una prueba con un set de datos, y solicitar al candidato que resuelva un objetivo en un tiempo requerido, y que explique sus conclusiones y resultados.Por ejemplo, si el candidato va a trabajar en un departamento de operaciones de cadena de suministro, se puede disponer de un set de datos en internet (hay cientos o miles disponibles) y pedirle que haga un modelo predictivo del tiempo de entrega de las mercancías, y que explique los resultados obtenidos. Deje que use el lenguaje de programación o el framework o las herramientas de su preferencia. Lo importante es que resuelva el problema, no enfocarse en las herramientas que usa para ello.¿Pero qué es y qué hace un data scientist?Un data scientist es un profesional capaz de resolver problemas operativos con datos; bien sea interpretando el pasado, diagnosticando las causas de eventos, o bien estimado el evento mas probable en el futuro. Además, un data scientist debe saber interpretar los resultados obtenidos de sus investigaciones, y lo que es más importante: debe ser capaz de explicar dichos resultados a cualquier audiencia -técnica o no-Exacto; un data scientist es un individuo versado tanto en conocimientos técnicos (estadística aplicada, programación, ingeniería de datos, inteligencia de negocios, etc.), como en habilidades blandas (comunicación, interpretación, pensamiento crítico, etc.). Y quizá, lo más importante y más escaso: debe conocer y entender el área operativa o de negocio donde va a desempeñar sus funciones. De no ser así, debe tener la habilidad de aprender rápidamente como opera la actividad donde desempeñará sus funciones de data scientist.Considere que no es lo mismo un data scientist que opera en recursos humanos, como otro que trabaja en marketing, o finanzas, o servicio técnico, u operaciones internas, o ingeniería, o farmacéutica, o producción industrial. Los datos son datos (estamos de acuerdo), pero el entorno es determinante por muchos matices que es necesario conocer.Fuente: businessoverbroadway.comLe aseguro que un buen data scientist no descansa hasta encontrar una solución ‘aparentemente imposible’ a problemas ‘aparentemente imposibles’. En la vida real, esto es más habitual de lo uno se imagina.Consideraciones de la organizaciónEs fundamental tener muy claro el objetivo de por qué necesitamos contratar un data scientist. Es decir, definir muy bien el alcance de nuestro problema de recursos humanos. Así mismo, es tanto o más importante, conocer el estado de la organización en el ciclo de madurez de la ciencia de datos.Menciono esto porque no siempre esta tan claro. He conocido gerentes que solo quieren contratar data scientists para dar una ‘imagen de modernidad digital y progreso’ frente a otros gerentes o departamentos, pero sin saber que trabajo se encomendara al futuro candidato. Conseguirá agotar al recurso humano y se ira a otro lugar tan pronto le sea posible.Por otro lado, hay organizaciones que están convencidas que están listas para aplicar Machine Learning o Inteligencia Artificial, pero realizan la mayoría de su reportería de manera manual (copiar-pegar) en hojas de calculo o en diapositivas; o lo que es peor, no tienen un sistema de bases de datos debidamente arquitectado u organizado.Para concluirAntes de contratar a un data scientist, evalúe seriamente reeducar a su personal existente y dotarlo de conocimientos técnicos relativos a ciencia de datos. Su personal existente ya conoce bien su cultura empresarial, los problemas mas habituales y saben bien lo que funciona y lo que no funciona en su organización. Esto es algo que puede llevar años a un data scientist.A lo largo de mis últimos 5 o 6 años de carrera profesional como data scientist, he tenido la ocasión de entrevistar laboralmente (o participar en entrevistas laborales de otros departamentos) a un buen número de candidatos a científico de datos; tanto individuos muy noveles (juniors) como experimentados (seniors).Además de esto, he tenido la gran dicha de entrenar a más de 500 compañeros de trabajo en ciencia de datos y analítica avanzada en los últimos 2 años. Profesionales de distintas áreas como finanzas, operaciones, marketing, contabilidad, recursos humanos, servicio al cliente, etcétera. P. J. MorenoSr Data Scientist

If you’re looking for a comprehensive guide on the best organizational practices for a post-pandemic future, look no further. This roadmap by Mckinsey & Company has it all.”Future-ready companies share 3 characteristics: 1. They know who they are and what they stand for; 2. They operate with a fixation on speed and simplicity; 3. And they grow by scaling up their ability to learn, innovate, and seek good ideas regardless of their origin. By embracing these fundamentals—through the nine organizational imperatives that underpin them—companies will improve their odds of thriving in the next normal.”

With the flood of sales tax decisions in the news, you may be wondering if your own tax setups and processes are right. During this session we’ll review the current state of sales tax laws and how the Wayfair decision has impacted nexus and forced changes on almost all companies. We’ll also discuss differing tax laws by jurisdiction and what the future may hold. Next, we’ll review how to set up BC / NAV to properly capture and report sales and use tax for items and taxing jurisdictions. Included in this will be what changes will be needed based on recent events, including the use of product and tax groups to help with reporting. We’ll also review the limitations on BC / NAV which will impact your operations and how to overcome them. Lastly, we’ll review what to do when the tax man cometh: how to prepare for an audit, how to get a nexus study done, and how to use BC / NAV to determine economic nexus.​​

Learn how you can start creating your own regression tests leveraging the Task Recorder, Excel and Azure Dev Ops together. If you are concerned about how your organization can practically take continuous updates then you will not want to miss this session. I will share tips and tricks for creating and running your tests. Learning Objectives: Discuss the prerequisites for installing and using RSAT.
Create task recordings, save them to the BPM, and synchronize tasks to Azure DevOps.

In This video learn how you can batch queries and operations against the REST/OData API of Microsoft SharePoint Online and the Files and folders subset of the Office 365 REST APIs. With this technique, you can improve the performance of your Power Automate Flow by combining many operations into a single request to the server and a single response back.Link to Sample Power Automate https://github.com/DeepakS22/DPowerAutomate/blob/master/SPBatchRequest_20210209162219.zip

According to this Bain research, some MedTech companies are more likely to outperform their peers during and after the crisis. The difference between these winning firms? They’re category leaders. Learn how, with a focus on category leadership rather than scale, MedTech companies can build market-leading positions and see attractive returns, accelerating ahead of the competition and out of the downturn.